Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3749510.v1

ABSTRACT

Over 200 million SARS-CoV-2 patients have or will develop persistent symptoms (long COVID). Given this pressing research priority, the National COVID Cohort Collaborative (N3C) developed a machine learning model using only electronic health record data to identify potential patients with long COVID. We hypothesized that additional data from health surveys, mobile devices, and genotypes could improve prediction ability. In a cohort of SARS-CoV-2 infected individuals (n=17,755) in the All of Us program, we applied and expanded upon the N3C long COVID prediction model, testing machine learning infrastructures, assessing model performance, and identifying factors that contributed most to the prediction models. For the survey/mobile device information and genetic data, extreme gradient boosting and a convolutional neural network delivered the best performance for predicting long COVID, respectively. Combined survey, genetic, and mobile data increased specificity and the Area Under Curve the Receiver Operating Characteristic score versus the original N3C model.


Subject(s)
Learning Disabilities , Severe Acute Respiratory Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.17.431554

ABSTRACT

BackgroundThe coronavirus disease 2019 (COVID-19) is an infectious disease that mainly affects the host respiratory system with [~]80% asymptomatic or mild cases and [~]5% severe cases. Recent genome-wide association studies (GWAS) have identified several genetic loci associated with the severe COVID-19 symptoms. Delineating the genetic variants and genes is important for better understanding its biological mechanisms. MethodsWe implemented integrative approaches, including transcriptome-wide association studies (TWAS), colocalization analysis and functional element prediction analysis, to interpret the genetic risks using two independent GWAS datasets in lung and immune cells. To understand the context-specific molecular alteration, we further performed deep learning-based single cell transcriptomic analyses on a bronchoalveolar lavage fluid (BALF) dataset from moderate and severe COVID-19 patients. ResultsWe discovered and replicated the genetically regulated expression of CXCR6 and CCR9 genes. These two genes have a protective effect on the lung and a risk effect on whole blood, respectively. The colocalization analysis of GWAS and cis-expression quantitative trait loci highlighted the regulatory effect on CXCR6 expression in lung and immune cells. In the lung resident memory CD8+ T (TRM) cells, we found a 3.32-fold decrease of cell proportion and lower expression of CXCR6 in the severe than moderate patients using the BALF transcriptomic dataset. Pro-inflammatory transcriptional programs were highlighted in TRM cells trajectory from moderate to severe patients. ConclusionsCXCR6 from the 3p21.31 locus is associated with severe COVID-19. CXCR6 tends to have a lower expression in lung TRM cells of severe patients, which aligns with the protective effect of CXCR6 from TWAS analysis. We illustrate one potential mechanism of host genetic factor impacting the severity of COVID-19 through regulating the expression of CXCR6 and TRM cell proportion and stability. Our results shed light on potential therapeutic targets for severe COVID-19.


Subject(s)
COVID-19
3.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-114758.v1

ABSTRACT

Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a vast amount of drug research for prevention and treatment has been quickly conducted, but these efforts have been unsuccessful thus far. Our objective is to prioritize repurposable drugs using a drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug interactions, deep graph neural networks, and in-vitro/population-based validations. We first collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate drug’s representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and rigorous validation can facilitate the rapid identification of candidate drugs for COVID-19 treatment. This paper had been uploaded to arXiv : https://arxiv.org/abs/2009.10931


Subject(s)
COVID-19
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2009.10931v2

ABSTRACT

Amid the pandemic of 2019 novel coronavirus disease (COVID-19) infected by SARS-CoV-2, a vast amount of drug research for prevention and treatment has been quickly conducted, but these efforts have been unsuccessful thus far. Our objective is to prioritize repurposable drugs using a drug repurposing pipeline that systematically integrates multiple SARS-CoV-2 and drug interactions, deep graph neural networks, and in-vitro/population-based validations. We first collected all the available drugs (n= 3,635) involved in COVID-19 patient treatment through CTDbase. We built a SARS-CoV-2 knowledge graph based on the interactions among virus baits, host genes, pathways, drugs, and phenotypes. A deep graph neural network approach was used to derive the candidate representation based on the biological interactions. We prioritized the candidate drugs using clinical trial history, and then validated them with their genetic profiles, in vitro experimental efficacy, and electronic health records. We highlight the top 22 drugs including Azithromycin, Atorvastatin, Aspirin, Acetaminophen, and Albuterol. We further pinpointed drug combinations that may synergistically target COVID-19. In summary, we demonstrated that the integration of extensive interactions, deep neural networks, and rigorous validation can facilitate the rapid identification of candidate drugs for COVID-19 treatment. This is a post-peer-review, pre-copyedit version of an article published in Scientific Reports The final authenticated version is available online at: https://www.researchsquare.com/article/rs-114758/v1


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL